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A cellular automata model of the soluble state
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Cellular automata models of solubilities in a solvent (water) have been dynamically
synthesized. Rules relating water-water, water-solute, and solute-solute relationships have
been systematically varied in order to assess their influence on the emergent property of
solubility. The results reveal the prominent influence of rules governing the probabilities of
solute-water joining and breaking. This influence manifests itself in significant changes in the
emergent properties of relative solubility and solubility changes with water “temperature”.
The study demonstrates the validity and potential value of cellular automata to model solution
phenomena.

1. Introduction

The liquid state of matter lying between the order of the solid and the randomness
of the vapor, has been characterized as a chaotic state. The dynamic events postulated
taking place produce a substance with attributes unique among liquids. A static defin-
ition of water structure is not meaningful; understanding being derived from dynamic
simulations of the interactions between components of the liquid. These simulations
have led to a general model with its origins in the work of Zachariasen [17] and Bernal
and Fowler [1]. Subsequent work has led to the emergence of a theory of liquid water
as a random network of hydrogen bonded molecules, rapidly breaking and exchang-
ing partners [4,12–14]. Rice and Skeats [13] have defined this model as having i)
a narrow range of separation of nearest neighbors, a condition very close to that of
ice, ii) an irregular connectivity within the network with various structures of multiple
waters randomly interwoven throughout the network, iii) a significant distribution of
angles between nearest neighbor bonds and iv) very few unbonded or small clusters of
water molecules. Other characteristics have been described by investigators studying
different aspects of the problem [15].
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The goal of understanding water may be approached by using one of two philo-
sophical concepts. In the classical Newtonian concept, we seek understanding through
the reduction of the whole into its parts or ingredients with subsequent study of these
parts and their limited interactions. These analyses have been viewed by some as con-
stituting the only way to achieve fundamental knowledge about a system. In contrast,
there has arisen in recent years an alternative approach to the understanding of nature.
This approach employing both reduction and synthesis, seeks to model a complex sys-
tem by combining separate elements to form a whole which has behavior and attributes
that have emerged unpredictably from the parts. Kier and Testa have recently written
on this topic as it relates to drug research [11]. Nowhere is the reality of emergent
behavior more evident than in the properties of a solution.

2. Aqueous solubility

One of the most important aspects of water is its ability to function as a solvent.
Indeed in the biological realm, aqueous solubility is an essential characteristic of
most biomolecules. Certain intermolecular forces have been ascribed between solute
molecules and solute–water pairs to account for the observation of solubility. The
classical scenario is i) the removal of a molecule from the solid phase, ii) the creation
of a cavity in the solvent to accept the solute molecule and finally iii) the acceptance
of the solute molecule into the cavity. The estimation of solubility from molecular
structure is actively pursued. It is a complicated problem because of the impact of
the electronic structure of mantle atoms, the topology, the size and the similarity to
the solvent. The traditional approach has been to employ a reductionist analysis of
molecules to the level of fragments and atoms to explain the measured property. This is
the basis of quantitative structure–activity relationships, much in use today to evaluate
phenomena including solubility. Such an approach omits the consideration of water as
a dynamic entity. Physical phenomena such as solubility arise as emergent properties,
unpredictable from an exclusively reductionist approach.

A second consideration that has guided our earlier work on water and solution
phenomena [6–10], is that a route to some understanding of solubility may begin with
relationships among the ingredients in the form of rules of engagement. Thus we do
not attempt to define and estimate forces between molecular features, but we write
down stochastic rules that govern whether two objects engage or repel; whether they
form aggregates or whether they break apart. Such a non-traditional approach is a
long way from the classical idea of ascribing to molecular fragments all of the forces
influencing a phenomenon; it epitomizes the phenomenon with rules. The outcomes or
emergent properties from the rules may be unforeseen and thus the dynamic process of
synthesis must be used. If we can obtain a profile of the extent of some phenomenon
like solubility based on rules, then further understanding of the phenomenon may be
at hand. This is the philosophy we have adopted in our cellular automata models of
water [6–10]. This is the approach we employ here to study aqueous solubility.
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3. Cellular automata

Cellular automata is a dynamic method for the modeling of the emergent behavior
of a complex system [2,3,16]. It is composed of a lattice or grid of sites called cells in
one, two or three dimensions. The intrinsic quality or status of any cell, i, is the state
of that cell. Each cell i, is in a local situation or map called a neighborhood. This
neighborhood of tesselated cells influences the changes that cell i may experience.
These changes or movement parameters are encoded into a set of rules. With the
successive response of each cell i to the movement parameters, an iteration of the
entire ensemble of cells occurs producing a configuration of the system and a unit
of “time”. The rules of a cellular automata are local, hence, there is no action at
a distance and the laws are uniform, that is the rules are the same for every cell.
The discreetness in time, space and rules results in an error-free specification of the
dynamics. The functioning of a computer is by the same process.

4. The rules

Our model is made up of a domain composed of cells on the surface of a torus.
Each cell, i, has four joined neighbors, j, and the cells two places beyond i, labeled
k in figure 1. The cells, i and j, constitute the von Neumann neighborhood while
the cells, j and k, constitute the extended von Neumann neighborhood. The state
of each cell reflects whether it is empty or occupied with a specific molecule. The
configuration of the entire system after any number of iterations is defined by the set of
state values. After a discrete number of iterations, discrete changes in each cell occur
according to rules that constitute the state and transition functions. These rules are
based on probabilities hence the initial state does not uniquely specify the dynamics
of any configuration. Only the parameters, not the initial states need be varied. The
model is thus stochastic and not deterministic.

Two parameters are selected for a simulation to govern the probabilities for move-
ment of the contents of the cells in the grid. The breaking probability, PB(XY ) is the
probability for molecule, X, in cell i, figure 1 to detach from the molecule of type Y ,
at some j cells when there is exactly one occupied j cell. The value for PB(XY ), lies
in the closed unit interval. When X and Y are the same molecular types, it is denoted
by PB(X) or PB(Y ) as symbolized in our previous study [7].

The second parameter, J(X), describes the movement of the molecule, X, in
cell i toward or away from the molecule Y , in cell k in the extended von Neumann
neighborhood when the intermediate j cell is vacant. It represents the ratio of the
probability that a molecule of type X at cell i will move toward a k cell occupied by
a molecule of type Y while the intermediate j cell is vacant, and the probability that a
molecule of type X at cell i will move toward a vacant k cell while the intermediate
j cell is vacant. J is a positive real number. When J(XY ) = 1, the molecule in
cell i has the same probability of movement toward an occupied cell k as when cell
k is empty. When J(XY ) > 1, it indicates that the molecule in cell i has a greater
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Figure 1. Cells i and j represent the von Neumann neighborhood while cell i, j and k represent the
extended von Neumann neighborhood.

probability of movement toward an occupied cell k than when cell k is empty. When
J(XY ) < 1, it indicates that molecule i has a lesser probability of movement toward
an occupied cell k than when cell k is empty. When X and Y are the same molecular
types, it is denoted by J(X) or J(Y ).

In our model, the moving probability, pm, for a molecule in a cell is defined as
follows:

pm =

{
sum of pm(d) over all possible d, if the sum < 1,
1, otherwise,

(1)

where d is a direction in which the molecule in cell i can move. The formula for
computing the pm(d) in a certain direction d is as follows:

Let n be the number of occupied j cells for a given i cell. So there are 4 − n
many directions that i can move. We define:

pm(d) =

{
1/(1 + ((4− n)/PB − 1)/J(d)), if n < 4 and PB > 0,
0, otherwise,

(2)

where J(d) = 1 if the k cell in the direction d is vacant, otherwise J(d) = the J value
with respect to the molecule types in cell i and cell k in the direction d, and where
PB is the product of the breaking probabilities contributed from the occupied cells.

The choice of pm(d) and pm allows for a simple computation of moving prob-
abilities while limiting the influence from molecules in k cells to a portion of the
moving probability, thus the influence from one direction does not overshadow the
influence from other directions. Furthermore, when all J values used in the system
are equal to 1, pm = (PB); this agrees with the intuitively reasonable assumption that
if the movement of a molecule is not influenced by molecules not bound to it, then its
moving probability is the joint probability of probabilities for it to break away from
molecules bound to it.
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5. Initial conditions

The size of the grid for our synthesis is 55×55 cells on a torus, thus there are no
boundary conditions. As in our earlier studies, we have designated about 69% of the
cells to have an occupied state. The detailed composition is 2000 cells designated as
being occupied with water and 100 cells occupied with an unspecified solute molecule.
The initial configuration of the system is a random distribution of the cells of any state
throughout the 3025 total cells in the grid. The transition functions or moving rules
for water (W ), the solute (L) and a tesselated pairing of the two (WL) are designated
thus:

PB(W ) . . . probability of a water molecule breaking from a water cluster,
PB(L) . . . probability of a solute molecule breaking from a solute cluster,
PB(WL) . . . probability of a water molecule breaking from a solute molecule (or
vice-versa) in a mixed cluster,
J(W ) . . . joining parameter for two water molecules,
J(L) . . . joining parameter for two solute molecules,
J(WL) . . . joining parameter for a water and a solute molecule.

6. Attributes recorded

At the end of each dynamic synthesis two attributes were recorded as average
values over the last 100 iterations of 2000 iteration runs. The first of these is the
fraction of isolated solute molecules not joined to other L molecules, labeled f0(L).
The values range over a unit interval. In this study we interpret this attribute to model
the state of a molecule most likely to be in solution. No doubt different solutes may
exhibit behavior characteristic of being in solution while existing in states of binding
as dimers and higher x-mers. Since we don’t define what our solute is but are pursuing
a general model, we can accept this approximation as valuable to our understanding
of the rule-based influences. The second attribute recorded is the average number of
L molecules joined to other L molecules, averaged over the last 100 iterations. We
use the symbol T (L) to denote this attribute. Its value ranges between 0 and 4.0. We
assume that high values describe a clustered state of the solute hence a relatively low
solubility.

7. Influence of solute-related rules on solubility

In this first series of simulations we are seeking information about the influence
of various solute rules on the attributes interpreted as solubility. The rules governing
the water state and transitions are held constant at: PB(W ) = 0.25, J(W ) = 1.0. The
sets of rules governing the trajectories of the solute are shown in table 1. For each
transition function, a high and a low value of the rule values were employed. For the
breaking probabilities, PB(WL) and PB(L), the rules reflect high and low probability
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Table 1
Solubility attributes from dynamics of various rules.

Rule set PB(WL) PB(L) J(WL) J(L) f0(L) T (L)

1 0.15 0.85 1.5 0.5 1.00 0.00
2 0.15 0.85 1.5 1.5 1.00 0.00
3 0.15 0.85 0.5 0.5 0.99 0.01
4 0.15 0.85 0.5 1.5 0.98 0.02
5 0.15 0.15 1.5 0.5 0.92 0.08
6 0.15 0.15 1.5 1.5 0.92 0.08
7 0.15 0.15 0.5 0.5 0.87 0.14
8 0.15 0.15 0.5 1.5 0.83 0.18
9 0.85 0.85 1.5 0.5 0.82 0.18

10 0.85 0.85 1.5 1.5 0.81 0.20
11 0.85 0.85 0.5 1.5 0.73 0.30
12 0.85 0.85 0.5 0.5 0.63 0.46
13 0.85 0.15 1.5 0.5 0.56 0.54
14 0.85 0.15 1.5 1.5 0.49 0.66
15 0.85 0.15 0.5 0.5 0.30 1.01
16 0.85 0.15 0.5 1.5 0.17 1.48

values of 0.85 and 0.15. For the joining parameters, J(WL) and J(L), the high and
low parameter values chosen were 1.5 and 0.5. This variety is designed to cover a
large part of the parameter space chosen for this study. The f0(L) and T (L) values
synthesized from each rule set are shown in table 1.

8. Results

The fraction of solute molecules not bound to other solute molecules, f0(L)
in table 1 is shown to be most strongly dependent on the value of PB(WL). The
upper half of the ranked list of f0(L) values correspond without exception to the low
numerical values of PB(WL). The lower the probability of breaking WL bonds, the
higher the fraction of single solute molecules. A change in the PB(WL) value from
0.85 to 0.15 can increase the f0(L) fraction by as much as 0.66, with an average
increase of 0.38.

Changes in PB(L) from 0.15 to 0.85 produce the next largest effect on f0(L)
among the rule sets in table 1. In both cases the higher PB(L) values give rise to higher
f0(L) values. The average increment in f0(L) created by the PB(L) value changes,
shown in table 1, is about 0.24. The influence on f0(L) due to changing J(WL), in
table 1 is modest. The average value of these increments is about 0.13. Finally, the
change in J(L) values produces virtually no change in f0(L). The relative influence
of these parameters can be summarized as: PB(WL) > PB(L) > J(WL) > J(L) by
ratios of 3:2:1:0.

In table 1 are also recorded the average tessellation value T (L), characterizing
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Table 2
Influence of various parameters on the PB(W )–f0(L) relationship.

PB(WL) = 0.9 PB(W ) = 0.25 PB(W ) = 0.75

Rule set PB(L) J(L) J(WL) f0(L) f0(L) ∆f0(L)

1 0.2 4.00 0.25 0.13 0.27 0.14
2 0.2 0.25 0.25 0.30 0.77 0.47
3 0.7 4.00 0.25 0.45 0.71 0.26
4 0.2 4.00 4.00 0.46 0.79 0.33
5 0.7 0.25 0.25 0.68 0.92 0.24
6 0.2 0.25 4.00 0.71 0.82 0.11
7 0.7 4.00 4.00 0.81 0.85 0.04
8 0.7 0.25 4.00 0.86 0.94 0.08

the degree of bonding. These values range from zero to four. As expected, they are
inversely related to the f0(L) values in the same table. The correlation is very high.

9. Influence of water rules on solubility

This study was designed to evaluate the influence of the rules governing the
breaking and joining of water clusters upon the fraction of unbound solute molecules.
In an earlier study, [6] we found that the PB(W ) parameter was in close correspondence
to the liquid water temperature based on several criteria. We also found that increasing
the PB(W ) value produced an increase in the f0 value corresponding to a model of an
increased solubility with a higher water “temperature”. We wish to extend that study
to evaluate the “temperature-solubility” effect influenced by other parameters.

In this study, we held PB(WL) constant at 0.90 and the J(W ) parameter at 1.0.
We ran the dynamics for 5000 iterations beginning with a random distribution of 100
solute molecules and 2000 water molecules in a 55× 55 grid. Two values of PB(W )
were chosen for selective evaluation, 0.25 and 0.75. The attributes are reported as
averages over the last 100 iterations of 5000 iteration runs. The three variable transition
functions, PB(L), J(L) and J(WL) are each represented in the parameter sets by two
rule values, one high and the other low. The values of f0(L) for each rule set and the
two PB(W ) values are shown in table 2.

10. Results

The principal observation from table 2 is the increase in the fraction of unbound
solute molecules, f0(L), when the water breaking probability is increased. This in-
crease ranges from a very modest 0.04 to a large value of 0.47. There is no simple
correlation between the incremental change in f0(L) due to the increase in PB(W ) and
the value of PB(L) itself. There is a clear relationship between ∆f0(L) and the value
of J(WL). With only one exception, the low values of J(WL) contribute to the high
values of ∆f0(L).
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11. The precision of multiple runs

The question arises concerning the relative reproducibility of multiple dynamic
models using stochastic parameters. To develop some insight into this problem we
have selected a test set of parameters representing values central in the parameter
space shown in table 1. These parameter values are:

PB(W ) = 0.25, J(W ) = 1,
PB(WL) = 0.5, J(WL) = 1,
PB(L) = 0.5, J(L) = 1.

A dynamic simulation was run using these parameters. At 4000 iterations, average
values of each of three attributes were computed over successive 100 iteration seg-
ments until the iteration count reached 6000. Thus 20 sets of average values were
collected in this run. In addition, standard deviations of each of these averages were
computed. This process was then repeated 20 times, collecting average values and
standard deviations in each run. An average of these 20 sets of averages was then
computed for each of the three attributes along with the standard deviations. These
results are:

average f0(L) = 0.830 ± 0.012,

average T (L) = 0.182 ± 0.014,

average nHB(W ) = 2.923 ± 0.005,

where nHB(W ) is the average count of bonded neighbors to a water molecule, inter-
preted earlier [6] as the average hydrogen bonding state. This analysis reveals a high
degree of reproducibility for these three attributes emerging from dynamics based upon
stochastic parameters.

12. Discussion

A series of cellular automata have been synthesized using stochastic rules to
influence the changing configurations of solute molecules in a solvent (here interpreted
as water). The purpose of the study is to evaluate the influence of the rules on two
“solubility” attributes. From a systematic variation of the rules, we can conclude that,
under the conditions of our simulations, the water–solute breaking parameter, PB(WL),
is the most influential on the extent of single solute molecule, f0(L), formation. This
implies that a very influential factor in solubility is the relationship between solute
and solvent. This is not a new idea certainly, but it is noteworthy that it arises as a
spontaneous event, or an emergent property from this dynamic synthesis. Furthermore,
this influence appears to be greater than the solute–solute cluster breaking parameter,
PB(L), although this later rule is a close second in average influence. This finding is
characteristic of a model in which the solute is formed in situ from a reaction. We
have obtained similar results by creating a model of the dissolution of a solid block
of solute molecules [8].
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Figure 2. A dynamic simulation of 100 solutes and 2000 water molecules in a 55 × 55 grid. The figure
enlarges a section of the total grid space. The PB(WL) value is 0.10. The black cells are water, the

gray are solute and the white are cavities.

The finding that low values of the water–solute breaking parameter, PB(WL),
produce a high fraction of unbound or single solute molecules, f0(L), is in agreement
with out earlier study [7]. In that series of simulations we were able to draw a
correspondence between low PB(WL) values and high “polarity” of molecules so
described. In those cases, the solute molecules were found to reside mostly within the
patches formed of water molecules in the random network. The single or unbound
configurations of the solute molecules is described by high f0(L) values. This is
interpreted as “being soluble”. In contrast, the high PB(WL) values studied earlier [7,
9] led to configurations of solute molecules outside of water patches, within the cavities
between them. This was interpreted as epitomizing a non-polar molecule. We related
this configuration to the conventional concept of the hydrophobic effect. In the present
study we see that high PB(WL) values lead to configurations interpreted as having
lower “solubilities”. Two figures, 2 and 3, show configurations synthesized from low
and high values of PB(WL), respectively. It is apparent that there is a significant
difference in the f0(L) values. Figure 2, from PB(WL) = 0.1, shows numerous single
solute molecules among the water patches with a high f0(L) value. We relate these
to “polar molecules”. In contrast, in figure 3, the solute molecules synthesized from
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Figure 3. The same conditions as in figure 2, but with PB(WL) = 0.80.

PB(WL) = 0.8 are concentrated within the cavities. These exist as single, dimeric and
higher x-mer aggregates, resulting in a lower f0(L) value. The solute is less soluble
than the study shown in figure 2. We can say that these are a “non-polar molecules”.
Overall, our results reveal that the polarity of a molecule, describable by the PB(WL)
rules, is influential on the solubility.

Changes in the water–water breaking probability, PB(W ), clearly influence the
f0(L) values. As shown in earlier studies [7,9], this rule closely parallels the tem-
perature. At high values of PB(W ) the f0(L) values are higher; a clear parallel to
the general observation of higher solubility with a higher temperature. The extent of
the f0(L) increase with PB(W ) is noticeably dependent upon the water–solute joining
parameter J(WL). The conclusion here is that a lower probability of a solute molecule
moving to bind with a water molecule leads to an increase in the solubility when the
water “temperature” is increased. This is interpretable from table 2, where low values
of J(WL) have initially lower values of f0(L) hence there is a potentially greater
range of f0(L) values possible. It is also quite apparent in this study that an attribute
of the solute, the f0(L), changes when a rule governing only water, PB(W ) changes.
This is a vivid example of an emergent property arising in a complex system from the
non-linear, hence unpredictable interactions of two ingredients.

These studies describe interpretations of the rules used in our cellular automata
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dynamics of solution phenomena. This is a new approach to the study of these systems
at the molecular system level. We are using rules to define the non-linear contribution
of molecules to emergent properties in a complex system. This is the same philoso-
phy employed in molecular dynamics [5], however, the simplicity, visualizability and
adaptability of complex systems using cellular automata are strong factors in its favor
as a method of dynamic modeling.
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